Towards Collaborative Mobility: A Joint Stakeholder Approach

SIS14 - TEAM project presentation

Ilja Radusch, Fraunhofer FOKUS
Tokyo, October 15th 2013
Vision

Achieving always optimal mobility conditions.

Targeting

• **Users**: Encouraging collaborative behaviour of travellers and drivers.

• **Infrastructure**: Making infrastructures adapt pro-actively and in real-time based on user needs.

• **Communication technologies**: Combining automotive communication systems with cloud technologies.
Mission

Turn static into elastic mobility by balancing needs.

Collaboration is the key concept.
It extends the cooperative concept of vehicle-2-x systems to include interaction and participation.

Make travellers and drivers, vehicles and infrastructure act as a TEAM
- Adapting to each other
- Adapting to the situation
Motivation

Vehicles and infrastructure already communicate...
Motivation

Smart phones and cloud services will be connected, too.
Motivation

Next: Collaboration integrates and balances all stakeholder needs.
Approach

Four paradigms define the research concept.

(1) Elastic mobility
means a shift from a reactive traffic management to an permanent adaptive and collaborative traffic management.

(2) Window of interaction
refers to the real time needs of human decision making process between 5 seconds and 5 minutes.

(3) Participation
considers the needs and behaviours of road users in the technical systems of intelligent transport solutions.

(4) Collaboration
extends the cooperative concept of vehicle-2-x systems by integrating the user into a highly interactive and participatory network.
Innovations

Building the elastic mobility management system.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Converged communication channels</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Distributed sensing and “best effort” balancing of needs according to local policies</td>
</tr>
<tr>
<td>Data</td>
<td>Consolidated sensor input available in real-time</td>
</tr>
<tr>
<td>Applications</td>
<td>Novel collaborative applications interconnected through automotive cloud</td>
</tr>
<tr>
<td>Traveller/driver</td>
<td>Active participation and collaboration</td>
</tr>
</tbody>
</table>
Objectives and work plan

Technologies and users interlinked.

Create
basic technologies
- Advance vehicle-2-x systems with LTE technologies
- Develop an automotive cloud-computing platform

Integrate
infrastructure-centric technologies and algorithms
- Develop proactive infrastructure-centric algorithms
- Enable behavioural change taking into account real-time needs and constraints

Demonstrate
distributed technologies and algorithms
- Develop proactive user-, community- and group-centric algorithms
- Realise massively distributed collaborative control and optimization concepts

Evaluate
the European scope
- Conduct pan-European Euro-EcoChallenge to demonstrate and evaluate TEAM results
Stakeholders

Stakeholders are essential for the key concept of collaboration.

TEAM uses stakeholders

• to detail use case identification, requirements and state-of-the-art analysis
• to establish a continuous dialogue to validate and improve designs and development
• to support the final evaluation
• to support deployment and exploitation

The stakeholders are

• car manufacturers
• suppliers
• telecommunication providers
• road infrastructure operators
Expected results

Improving the mobility network.

- Novel distributed sensing and “best-effort” balancing algorithms
- Cloud-based local dynamic map services and associated communication technologies
- Off-board telematics services and in-vehicle smart phone integration
- Coaching mechanisms for safe and green driving and travelling
Applications

Infrastructure.

(1) Collaborative pro-active urban/inter-urban monitoring and ad-hoc control
(2) Collaborative co-modal route planning
(3) Co-modal coaching with support from virtual/avatar users
(4) Collaborative smart intersection for intelligent priorities
(5) Collaborative public transport optimization
(6) Collaborative dynamic corridors
Applications

Travellers & drivers.

1. Collaborative adaptive cruise control
2. Collaborative eco-friendly parking
3. Collaborative driving and merging
4. Green, safe and collaborative driving serious game and community building
5. Collaborative eco-friendly navigation
Infrastructure stakeholders’ involvement

Including major municipalities from the beginning.

Germany – Berlin
Co-modality test in the large scale public transport system and urban traffic management applications

Italy – Turin and Trento province
Verification of the TEAM service continuity for the travellers and drivers community

Sweden – Gothenburg
Trials of interurban applications and vehicle to vehicle communication

Greece – Athens and Trikala
Test and demonstration of all FLEX applications

Finland – Tampere and Helsinki
Integration of DIALOGUE applications into real world infrastructure data
The test set-up for components.

- Technology and performance test of all components and applications
- Instructed users will test the TEAM developments
- Challenges for TEAM application users (mainly drivers and travellers) to demonstrate the behavioral changes
- Demonstration of results in public events
Work structure

TEAM

SP1 MANAGEMENT
- WP 1.1 Project coordination
- WP 1.2 Operational management
- WP 1.3 Technical management

SP2 EMPOWER
- WP 2.1 Technical management
- WP 2.2 Users, stakeholders and use cases
- WP 2.3 Requirements and specification
- WP 2.4 Architecture and design
- WP 2.5 Development and integration
- WP 2.6 Technical verification

SP3 FLEX
- WP 3.1 Technical management
- WP 3.2 Users, stakeholders and use cases
- WP 3.3 Requirements and specification
- WP 3.4 Architecture and design
- WP 3.5 Development and integration of applications
- WP 3.6 Technical verification

SP4 DIALOGUE
- WP 4.1 Technical management
- WP 4.2 Users, stakeholders and use cases
- WP 4.3 Requirements and specification
- WP 4.4 Architecture and design
- WP 4.5 Development and integration of core applications
- WP 4.6 Technical verification

SP5 EVALUATION
- WP 5.1 Technical management
- WP 5.2 Specification of evaluation methodology
- WP 5.3 Pilot sites integration
- WP 5.4 Performing the Euro-EcoChallenge
- WP 5.5 Impact on travel and energy efficiency
- WP 5.6 User acceptance and conditions for collabor. travelling

SP6 SUPPORT
- WP 6.1 Technical management
- WP 6.2 Dissemination activities
- WP 6.3 Euro-EcoChallenge dissem. activities and final event
- WP 6.4 Liaison and interaction activities
- WP 6.5 Standardisation activities
- WP 6.6 Exploitation activities
Workflow

SP1 MANAGEMENT

- applications
- enablers

SP3 FLEX: infrastructure-centric technologies

SP2 EMPOWER: advanced technologies

SP4 DIALOGUE: user-centric technologies

SP5 EVALUATION: Euro-EcoChallenge

SP6 SUPPORT: dissemination and standardisation
Milestones and timeline

- M1.0: Use cases defined
 - Apr 13

- M2.0: System requirements
 - Dec 13

- M3.0: System specification defined

- M4.0: Basic system and enablers integrated
 - Oct 14

- M5.0: TEAM applications integrated
 - Oct 15

- M6.0: Euro-EcoChallenge conducted
 - May 16

- M7.0: Exploitation measures agreed
 - Oct 16

Duration 48 months, November 2012 – October 2016
Team facts

Duration: 48 months
November 2012 – October 2016

Total budget: 17.1 m€
EU funding: 11.1 m€

Coordinator: Fraunhofer FOKUS, Dr. Ilja Radusch

Consortium: 27 partners
7 support partners

This project is co-funded by the European Union
Consortium

Automotive

ICT

Infra-structure

Research

Other
Support partners

BERLIN Senate
City of Tampere
EUCAR
Finnish Transport Agency
POLIS
Swedish Transport Administration
VMZ Berlin
The end

Dr. Ilja Radusch
Head of Department ASCT
Fraunhofer FOKUS

ilja.radusch@fokus.fraunhofer.de
www.fokus.fraunhofer.de