Public transport optimisation
based on traveller requests and network efficiency

Angelos Amditis
RTIC 2014 Conference
London, 6-7.10.2014
Contents

Topics of the presentation

1) TEAM IP: Overview
2) Introduction : TEAM IP and CPTO / Demand Responsive Transport
3) Use Cases and Requirements
4) CPTO Concept
5) CPTO Architecture Overview
6) Public Transport Data
7) Communication with Operator and Traveller
8) Algorithms – Dynamic Route Adaptation / Change of Stops / Headway Adaptation
9) Algorithms – Optimisation Concept
10) Next steps
TEAM IP: Mission and Timeline

Turn static into elastic mobility by balancing needs.

Collaboration is the key concept.

- It extends the cooperative concept of vehicle-2-x systems to include interaction and participation.
- Make travellers and drivers, vehicles and infrastructure act as a TEAM adapting to each other and to the situation.

Use cases defined | System requirements | System specification defined | Basic system and enablers integrated | TEAM applications integrated | Euro-EcoChallenge conducted | Exploitation measures agreed

Apr 13 | Dec 13 | Oct 14 | Oct 15 | May 16 | Oct 16

Duration 48 months, November 2012 – October 2016
TEAM IP: Workflow

MANAGEMENT

applications
enablers

infrastructure-centric technologies

advanced technologies

dissemination and standardisation

applications
enablers

user-centric technologies

Evaluation and Euro-EcoChallenge
TEAM IP: Consortium

Automotive

ICT

Infra-structure

Research

Other

Road Transport Information and Control (RTIC) Conference 2014
TEAM IP: Applications

1. Collaborative pro-active urban/inter-urban monitoring and ad-hoc control
2. Collaborative co-modal route planning
3. Co-modal coaching with support from virtual/avatar users
4. Collaborative smart intersection for intelligent priorities
5. Collaborative public transport optimization
6. Collaborative dynamic corridors

1. Collaborative adaptive cruise control
2. Collaborative eco-friendly parking
3. Collaborative driving and merging
4. Green, safe and collaborative driving serious game and community building
5. Collaborative eco-friendly navigation
Introduction (I)

TEAM IP – Collaborative Public Transport Optimisation (CPTO)

- Introduce demand responsive transport solutions in authorised bus transport providers and higher passenger demand compared to existing DRT.

- Serve simultaneously passenger demand and the cities (optimisation of network efficiency, CO2 emissions reduction, minimisation of operator cost).

- Include innovative use cases, such as real time event based route adaptation and bus headway adaptation.

Testing:
1. Realistic simulation environment,
2. Real traffic conditions (in three European cities - under negotiation)
Introduction (II)

Demand Responsive Transport (DRT) - definitions

**DRT already in practice:** *flexible routing and scheduling of small/medium vehicles operating in shared-ride mode between pick-up and drop-off locations according to passengers needs.*

**Problem:** *Dial-a-Ride Problem (DARP), which consists of designing vehicle routes and schedules for n users who specify pick-up and drop-off requests between origins and destinations.*

**Quality of service criteria / control values:** *route duration, route length, customer waiting time, customer ride time, difference between actual and desired drop-off times.*

**DARP solution:** *(1) determining clusters of users to be served by the same vehicle; (2) sequencing these users into a vehicle route; (3) scheduling pick-up, driving and drop-off activities along each route.*
Use Cases & Requirements

**CPTO Use cases:**
1. Accident or traffic based route adaptation,
2. Event-based route adaptation,
3. Adding and/or skipping bus stops,
4. Headway adaptation,
5. En-route information to the traveller,
6. Pre-trip information to the traveller.

**CPTO Requirements (summary):**
- **I/O**: user input data and presentation of information.
- **Data**: real-time access to PT data and road traffic conditions.
- **Communication**: Connectivity with end-user, PT operator, and road operator.
- **Processing**: Affected bus routes, Alternative route calculation, Public transport stops handling, PT data adaptation, Bus speed recommendation, Bus stops recommendation, Scheduling in case of an event, Headway adaptation, Traveller to bus association, Real-time information to the traveller.
CPTO: Concept

i) Receive as input: (a) traffic congestion data, (b) traveler data, (c) public transport static and dynamic data

ii) Compute: (a) the optimal bus routes and timetables, (b) suggested bus speeds per line, according to some predefined criteria on delay, pollution and costs.

iii) Communicate them to the Transport Operator, who takes the final decision, informs bus drivers and sends decision back to CPTO.

iv) Communicate the final outcome to the registered travelers mobile devices in terms of waiting time in bus stops customized to their trip.

v) Updates dynamic public transport data in LDM++ and CPTO-DB.
CPTO Architecture Overview

Using ITS: Communications Architecture standard ETSI EN 302 665 V1.1.1
Components & Interactions

Internal (CPTO) & External (TEAM) components

Dynamic Route Adaptation
Dynamic Headway Adaptation
Bus Stop Change
Real Time Information
PT Info
CPTO DB
Public Transport Operator
PT Data Adapter
Traveler
CPTO - central
CPTO - personal

LDM++
Applications
Public Transport Data

Per Road Segment ID:
- List of Bus Stop Locations
  Per Bus Stop:
  - Location
  - List of Bus Lines

Per Bus Line
  - Arrival Times

Per Running Bus:
- Road Segment ID
- Position coordinates
- Route (Graph of Segments)
- Array of Bus Stops
- Bus passenger load
Communication: PT Operator & User

Real Time Information

to **PT Operator**

*Input*: PTO requests, Bus specific data (position, load, speed).

To **Travelers**

*Input*: Traveler demand
**Dynamic Route Adaptation:**
Plans and dynamically adapts the route of a Bus of interest.
*Input:* Traffic situation, PT data, events- accidents-blockages of roads.
*Output:* New suggested routes for Bus.

**Bus Stop Change:**
Recognizes problematic situations and adds or skips bus stops.
*Input:* DRA suggested routes, Traveler demands, Operator request for investigation.

**Bus Headway Adaptation:**
Dynamically adapts the distance between the buses performing the same routes.
*Input:* Traffic situation, PT data.
*Output:* Suggested speeds/departure times for running buses.
Algorithm - concept

- Road network is modeled as weighted graph - nodes (possible bus stops).
- Each edge has weights (time to travel along) and cost (e.g. emission or other).
- Time $T_k(p)$ for traveller $k$ to reach intended destination, depending on bus path $p$.
- Optimal path between the selected nodes determines univocally the optimal succession of stops $p^*$ that the on-demand bus has to follow.

OBJECTIVE

- Computing the optimal path $p^*$ for the Dial-A-Ride Bus that jointly minimizes:
  - $i)$ the total waiting + travel time for all passengers
  - $ii)$ the environmental cost of the trip

$$\text{optimal path } p^* = \arg \min_{path_p} \sum_{person_k} \text{arrival time } T_k(p) + \gamma \sum_{\text{edge}(i,j) \in p} \text{environmental cost } c_{i,j}$$
- Within the TEAM framework, selected CPTO Use Cases will be integrated and demonstrated in real time urban conditions in Pilot Sites while others in Simulation.

- Bus On Demand algorithm has been tested on a realistic scenario in the city of Dublin, with use of pollution cost functions.

- Real time implementation is in progress (Android mobile application for passengers) and a central server (that collects passenger and bus fleet data and runs the algorithms - optimization and passenger routing)
Thank you!

Dr. Angelos Amditis
Research Director
ICCS

Contact
9 Iroon Polytechniou str,
Polytechnic Campus, Athens, GR-15773
Phone: +30 210 772 1663
Fax: +30 210 772 2291
Email: a.amditis@iccs.gr
http://i-sense.iccs.ntua.gr/