Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
	Evaluation of a ne system using hard	ew intelligent sp Iware-in-the-loo	eed advisory p simulation	

R.H. Ordóñez-Hurtado¹ W.M. Griggs¹ K. Massow² R.N. Shorten^{1,3}

¹The Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland

²Fraunhofer FOKUS, Berlin, Germany

³IBM Research Ireland, Dublin, Ireland

International Conference on Connected Vehicles and Expo 2013, Las Vegas, Nevada, USA

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary

Motivation

- Intelligent Transportation Systems
- Methodologies for Evaluation
- Our proposal
- 2 The Proposed Advisory System
 - First stage: Traffic scenario determination
 - Second stage: Speed and distance recommendations
- 3 SUMO-phone Integration
 - The simulation platform
 - HIL capabilities

4 Experimental Results

- Simulation Setup
- Tests

Motivation ●00000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	
Intelligent Tra	nsportation Systems			
Trai	nsportation systems			
٥	<u>TS:</u> vehicles $+$ infrastr	ructure + human co	mponent.	
•	Problems: congestion,	carbon emissions, r	outing, safety.	
•	Trivial solutions: build new physical infrastruc	ing additional capac cture.	ity, incorporating	

Motivat ●0000	ion O	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	
Intellige	nt Tra	nsportation Systems			
ſ	Trar	sportation systems			
	٩	$\underline{TS:} \text{ vehicles} + infrastr$	ucture + human co	mponent.	
	۲	Problems: congestion,	carbon emissions, r	outing, safety.	
	•	Trivial solutions: build new physical infrastruc	ing additional capac ture.	tity, incorporating	

H

ar i

Motiv: ●000	ation 00	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	
Intellig	gent Tra	nsportation Systems			
	Trar	nsportation systems			
	٩	$\underline{TS:}$ vehicles + infrastr	ucture + human co	mponent.	
	٩	Problems: congestion,	carbon emissions, r	outing, safety.	
	۲	Trivial solutions: build new physical infrastruc	ing additional capad ture.	ity, incorporating	

ar -

The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
ansportation Systems			
nsportation systems			
<u>TS:</u> vehicles $+$ infrast	ructure + human co	omponent.	
Problems: congestion,	carbon emissions, r	outing, safety.	
<u>Trivial solutions</u> : build new physical infrastruc	ing additional capac cture.	city, incorporating	
	The Proposed Advisory System oocoocoo ansportation Systems <u>TS:</u> vehicles + infrastr <u>Problems:</u> congestion, <u>Trivial solutions:</u> build new physical infrastruc	The Proposed Advisory System SUMO-phone Integration ooo ooo ooo ooo insportation Systems insportation systems <u>TS:</u> vehicles + infrastructure + human co <u>Problems:</u> congestion, carbon emissions, r <u>Trivial solutions:</u> building additional capadine new physical infrastructure.	The Proposed Advisory System SUMO-phone Integration Experimental Results 0000 0000 0000 0000 Insportation Systems Image: specific systems 0000 0000 Image: specific systems Image: specific systems 1 1 Image: specific systems Image: specific systems 1 1

Motivatio ●00000	n The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
Intelligent	Transportation Systems			
Γ	ransportation systems			
• <u>TS</u> : vehicles + infrastructure + human component.				
	• <u>Problems:</u> congestion	, carbon emissions, r	outing, safety.	

• <u>Trivial solutions</u>: building additional capacity, incorporating new physical infrastructure.

Motivation 0●0000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summa
Intelligent Tra	nsportation Systems			
Trar	nsportation systems			
۲	Intelligent solutions: In communication system	nformation Technolo is.	ogies + wireless	
	Intelligent Transp	ortation Systems (I	TS): flexibility,	

adaptation, scalability, better-informed decisions.

Intelligent Transportation Systems (ITS)

- <u>Advanced Traveler Information:</u> Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- <u>Fully integrated systems (VII + V2V integration)</u>: Intelligent Speed Adaptation.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Intelligent Trar	nsportation Systems			

- Intelligent solutions: Information Technologies + wireless communication systems.
 - Intelligent Transportation Systems (ITS): flexibility, adaptation, scalability, better-informed decisions.

ITS) Intelligent Transportation Systems

- <u>Advanced Traveler Information:</u> Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- <u>Fully integrated systems (VII + V2V integration)</u>: Intelligent Speed Adaptation.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Intelligent Trar	nsportation Systems			
	-			

- Intelligent solutions: Information Technologies + wireless communication systems.
 - Intelligent Transportation Systems (ITS): flexibility, adaptation, scalability, better-informed decisions.

Intelligent Transportation Systems (ITS)

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (VII + V2V integration): Intelligent Speed Adaptation.

Motivation 0●0000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Intelligent Trar	nsportation Systems			

- Intelligent solutions: Information Technologies + wireless communication systems.
 - Intelligent Transportation Systems (ITS): flexibility, adaptation, scalability, better-informed decisions.

Intelligent Transportation Systems (ITS)

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (VII + V2V integration): Intelligent Speed Adaptation.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Intelligent Trar	sportation Systems			
(_				

- Intelligent solutions: Information Technologies + wireless communication systems.
 - Intelligent Transportation Systems (ITS): flexibility, adaptation, scalability, better-informed decisions.

Intelligent Transportation Systems (ITS)

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (VII + V2V integration): Intelligent Speed Adaptation.

Motivation 0●0000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Intelligent Trar	nsportation Systems			
T	and a first the second second			

- Intelligent solutions: Information Technologies + wireless communication systems.
 - Intelligent Transportation Systems (ITS): flexibility, adaptation, scalability, better-informed decisions.

Intelligent Transportation Systems (ITS)

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (VII + V2V integration): Intelligent Speed Adaptation.

Motivation 0●0000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Intelligent Trar	nsportation Systems			
T	and a first the second second			

- Intelligent solutions: Information Technologies + wireless communication systems.
 - Intelligent Transportation Systems (ITS): flexibility, adaptation, scalability, better-informed decisions.

Intelligent Transportation Systems (ITS)

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- ITS-based Transportation Pricing: Electronic Toll Collection.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (VII + V2V integration): Intelligent Speed Adaptation.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Intelligent Transp	ortation Systems			

- Voluntary: Speed Advisory System.
 - Static: fixed/localised speed limits.
 - Dynamic: real-time environmental information.
- Mandatory: Cooperative/Adaptive Cruise Control.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Intelligent Transp	ortation Systems			

- Voluntary: Speed Advisory System.
 - Static: fixed/localised speed limits.
 - Dynamic: real-time environmental information.
- Mandatory: Cooperative/Adaptive Cruise Control.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Intelligent Transp	ortation Systems			

- Voluntary: Speed Advisory System.
 - Static: fixed/localised speed limits.
 - Dynamic: real-time environmental information.

• Mandatory: Cooperative/Adaptive Cruise Control.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Intelligent Transp	ortation Systems			

- Voluntary: Speed Advisory System.
 - Static: fixed/localised speed limits.
 - Dynamic: real-time environmental information.
- Mandatory: Cooperative/Adaptive Cruise Control.

Motivation ○○○●○○	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	
Methodologies	for Evaluation			
Real	-world tests			
۲	Pros:			
	• Realistic results, sti	raight conclusions.		
٠	Cons:			
	Impractical: AvailabRisks of damage: v	bility and costs of req ehicle collision, huma	uired resources. n injuries.	
Sim	lation-based tests			

• Cons:

Accurate mathematical models/representations are required
 Unrealistic conclusions from a non-comprehensive setup.

Motivation ○○○●○○	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summa
Methodologies	for Evaluation			
Real	-world tests			
۹	Pros:			
	• Realistic results, sti	raight conclusions.		
•	Cons:			
	 Impractical: Availab Risks of damage: v 	bility and costs of req ehicle collision, huma	uired resources. n injuries.	

Accurate mathematical models/representations are required
 Unrealistic conclusions from a non-comprehensive setup

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
Methodologies	for Evaluation			
Real	-world tests			
۲	Pros:			
	• Realistic results, st	raight conclusions.		
•	Cons:			
	Impractical: AvailateRisks of damage: v	bility and costs of req ehicle collision, huma	uired resources. n injuries.	
Sim	ulation-based tests			

• Results easily reproducible.

• Cons:

Accurate mathematical models/representations are required
 Uprealistic conclusions from a non-comprehensive setup

Motivation ○○○●○○	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summa
Methodolo	gies for Evaluation			
R	eal-world tests			
	• Pros:			
	• Realistic results, st	raight conclusions.		
	• Cons:			
	Impractical: AvailaRisks of damage: v	bility and costs of req ehicle collision, huma	uired resources. n injuries.	
Si	mulation-based tests			

• Pros:

- Quicker, safer and cheaper tests.
- More comprehensive tests (more quality).
- Results easily reproducible.
- Cons:

H

• Accurate mathematical models/representations are required.

• Unrealistic conclusions from a non-comprehensive setup.

ł۳.

Motivatio ○○●○○	n The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summa
Methodol	ogies for Evaluation			
R	eal-world tests			
	• Pros:			
	• Realistic results, st	raight conclusions.		
	• Cons:			
	 Impractical: Availa Risks of damage: v 	bility and costs of req vehicle collision, huma	uired resources. n injuries.	
S	imulation-based tests			

• Pros:

- Quicker, safer and cheaper tests.
- More comprehensive tests (more quality).
- Results easily reproducible.

• Cons:

H

• Accurate mathematical models/representations are required.

• Unrealistic conclusions from a non-comprehensive setup.

Motivation ○○○●○○	n The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summa
Methodol	ogies for Evaluation			
R	eal-world tests			
	• Pros:			
	• Realistic results, st	raight conclusions.		
	• Cons:			
	Impractical: AvailaRisks of damage: v	bility and costs of req ehicle collision, huma	uired resources. n injuries.	
S	imulation-based tests			

• Pros:

- Quicker, safer and cheaper tests.
- More comprehensive tests (more quality).
- Results easily reproducible.

Cons:

- Accurate mathematical models/representations are required.
- Unrealistic conclusions from a non-comprehensive setup.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Methodologies for	r Evaluation			

Type of simulations

- Traditional simulation:
 - Ideal situations (sometimes not very realistic).
 - It does not include real components in the simulation.
- Hardware-in-the-loop simulation:
 - Includes real components in the simulation: on-line human feedback, signals from real devices.
 - Allows more realistic tests with more quality.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Methodologies fo	r Evaluation			

Type of simulations

• Traditional simulation:

- Ideal situations (sometimes not very realistic).
- It does not include real components in the simulation.
- Hardware-in-the-loop simulation:
 - Includes real components in the simulation: on-line human feedback, signals from real devices.
 - Allows more realistic tests with more quality.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
000000				
Methodologies fo	r Evaluation			

Type of simulations

• Traditional simulation:

- Ideal situations (sometimes not very realistic).
- It does not include real components in the simulation.

• Hardware-in-the-loop simulation:

- Includes real components in the simulation: on-line human feedback, signals from real devices.
- Allows more realistic tests with more quality.

Our proposal

Our previous work [1]:

[1] R. Ordonez-Hurtado, W. Griggs, K. Massow and R. Shorten. Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination. Lecture Notes in Control and Information Sciences, Springer, accepted.

- An dynamic advisory ISA system:
 - First stage: Traffic scenario determination supported on vehicle-to-vehicle (V2V) communication.
 - <u>Second stage:</u> Recommended parameters calculation supported on the determined traffic scenario.
- Evaluation using a off-line simulation:
 - The target vehicle and all the other vehicles are simulated.

The current work:

- Evaluation using a hardware-in-the-loop simulation:
 - The target vehicle is a real car embedded into a real-time simulation [2], and all the other vehicles are simulated.
- H [2] W. Griggs and R. Shorten. Embedding Real Vehicles in SUMO for Large-Scale ITS Scenario Emulation. Accepted in ICCVE 2013.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Exp
000000			

Our proposa

Our previous work [1]:

[1] R. Ordonez-Hurtado, W. Griggs, K. Massow and R. Shorten. Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination. Lecture Notes in Control and Information Sciences, Springer, accepted.

• An dynamic advisory ISA system:

- First stage: Traffic scenario determination supported on vehicle-to-vehicle (V2V) communication.
- <u>Second stage:</u> Recommended parameters calculation supported on the determined traffic scenario.
- Evaluation using a off-line simulation:
 - The target vehicle and all the other vehicles are simulated.

The current work:

- Evaluation using a hardware-in-the-loop simulation:
 - The target vehicle is a real car embedded into a real-time simulation [2], and all the other vehicles are simulated.
- [2] W. Griggs and R. Shorten. Embedding Real Vehicles in SUMO for Large-Scale ITS Scenario Emulation. Accepted in ICCVE 2013.

Motivation	The Proposed Advisory System	SUMO-phone Integration
000000		
<u> </u>		

Our proposal

Our previous work [1]:

[1] R. Ordonez-Hurtado, W. Griggs, K. Massow and R. Shorten. Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination. Lecture Notes in Control and Information Sciences, Springer, accepted.

- An dynamic advisory ISA system:
 - First stage: Traffic scenario determination supported on vehicle-to-vehicle (V2V) communication.
 - <u>Second stage:</u> Recommended parameters calculation supported on the determined traffic scenario.
- Evaluation using a off-line simulation:
 - The target vehicle and all the other vehicles are simulated.

The current work:

- Evaluation using a hardware-in-the-loop simulation:
 - The target vehicle is a real car embedded into a real-time simulation [2], and all the other vehicles are simulated.
- H [2] W. Griggs and R. Shorten. Embedding Real Vehicles in SUMO for Large-Scale ITS Scenario Emulation. Accepted in ICCVE 2013.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimer
000000			

Our previous work [1]:

[1] R. Ordonez-Hurtado, W. Griggs, K. Massow and R. Shorten. Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination. Lecture Notes in Control and Information Sciences, Springer, accepted.

- An dynamic advisory ISA system:
 - First stage: Traffic scenario determination supported on vehicle-to-vehicle (V2V) communication.
 - <u>Second stage:</u> Recommended parameters calculation supported on the determined traffic scenario.
- Evaluation using a off-line simulation:
 - The target vehicle and all the other vehicles are simulated.

The current work:

- Evaluation using a hardware-in-the-loop simulation:
 - The target vehicle is a real car embedded into a real-time simulation [2], and all the other vehicles are simulated.
- $_{\rm tr}$ [2] W. Griggs and R. Shorten. Embedding Real Vehicles in SUMO for Large-Scale ITS Scenario Emulation. Accepted in ICCVE 2013.

ł۳.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
First stage:	Traffic scenario determination			
Tra	affic determination			
	 Depends on both space 	e and time.		
	 Thus, a reference in sp 	bace and time is nee	eded.	
		\		

(HV), i.e. a point in the future trajectory of the HV

Motivation 000000	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	SUMO-phone Integration	Experimental Results	Summar
First stage: T	raffic scenario determination			
Trat	ffic determination			
۲	Depends on both space	e and time.		
•	Thus, a reference in s	bace and time is nee	ded.	
Nex	t point of interest (NP)		

• The NPI is a spatial-temporal reference for the Host Vehicle (HV), i.e. a point in the future trajectory of the HV.

Motivation 000000	● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	SUMO-phone Integration	Experimental Results	Summar
First stage:	Traffic scenario determination			
Tr	affic determination			
 Depends on both space and time. 				
	• Thus, a reference in sp	bace and time is nee	ded.	
		λ.		

Next point of interest (NPI)

• The NPI is a spatial-temporal reference for the Host Vehicle (HV), i.e. a point in the future trajectory of the HV.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
First stage: Tr	affic scenario determination			

The NV is a vehicle representing the NPI. It can be a real vehicle or a virtual vehicle.

Real NV

The nearest vehicle to the NPI inside a radius *r_N*.

Virtual NV

Placed at the NPI if no one vehicle is inside a radius r_N .

Motivation 000000	The Proposed Advisory System 0●00000	SUMO-phone Integration	Experimental Results 0000	Summary
First stage: Tr	affic scenario determination			

The NV is a vehicle representing the NPI. It can be a real vehicle or a virtual vehicle.

Real NV

The nearest vehicle to the NPI inside a radius r_N .

Virtual NV

Placed at the NPI if no one vehicle is inside a radius r_N .

Motivation 000000	The Proposed Advisory System 0●00000	SUMO-phone Integration	Experimental Results 0000	Summary
First stage: Tr	raffic scenario determination			

The NV is a vehicle representing the NPI. It can be a real vehicle or a virtual vehicle.

Real NV

The nearest vehicle to the NPI inside a radius r_N .

Virtual NV

Placed at the NPI if no one vehicle is inside a radius r_N .

Motivation 000000	The Proposed Advisory System 0●00000	SUMO-phone Integration	Experimental Results 0000	Summary
First stage: Tra	affic scenario determination			

The NV is a vehicle representing the NPI. It can be a real vehicle or a virtual vehicle.

Real NV

The nearest vehicle to the NPI inside a radius r_N .

Virtual NV

Placed at the NPI if no one vehicle is inside a radius r_N .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Motivation 000000	The Proposed Advisory System o●ooooo	SUMO-phone Integration	Experimental Results 0000	Summary
First stage: Tra	iffic scenario determination			

The NV is a vehicle representing the NPI. It can be a real vehicle or a virtual vehicle.

Real NV

The nearest vehicle to the NPI inside a radius r_N .

Virtual NV

I

Placed at the NPI if no one vehicle is inside a radius r_N .

lt is	estimated using inform	nation from V2V cor	mmunication [3]:	
		$\delta = \frac{n_r + 1}{A}$		
n _r is area	the number of vehicle	s inside a radious r_L	, A is the "polling	
	Sarelli etal. Mobsampling: V2V comm lar Technology Conference (VTC Spring	unications for traffic density estin ;), Budapest, Hungary, May 15-18		

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
First stage: T	raffic scenario determination			
Veh	icular density			
It is	estimated using inform	ation from V2V cor	mmunication [3]:	
		$\delta = \frac{n_r + 1}{A}$		
n _r is area	s the number of vehicles	s inside a radious r_L	o, A is the "pollin	g"
[3] L. (Vehicu	Garelli etal. Mobsampling: V2V commu lar Technology Conference (VTC Spring	nications for traffic density estin), Budapest, Hungary, May 15-18	nation. In 2011 IEEE 73rd 2011.	

Polling area

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summar
First stage:	Traffic scenario determination			
Ve	ehicular density			
lt	is estimated using inform	ation from V2V cor	nmunication [3]:	
		$\delta = \frac{n_r + 1}{A}$		
n _r ar	is the number of vehicles ea.	s inside a radious r_L), A is the "pollin	g"
[3] Veh	L. Garelli etal. Mobsampling: V2V commu icular Technology Conference (VTC Spring	nications for traffic density estin), Budapest, Hungary, May 15-18	nation. In 2011 IEEE 73rd 2011.	

Polling area

Motiva 00000	tion The Proposed Advisory System SUMO-phone Integration Experimental Results Sur oo ooo ooo ooo ooo	nmar			
First st	age: Traffic scenario determination				
	Vehicular density				
	It is estimated using information from V2V communication [3]:				
	$\delta = \frac{n_r + 1}{A}$				
	n_r is the number of vehicles inside a radious r_D , A is the "polling" area.				
	[3] L. Garelli etal. Mobsampling: V2V communications for traffic density estimation. In 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, May 15-18 2011.				
	Polling area				
	If $2r_D \leq W_R$				
	$ = \underbrace{ \begin{pmatrix} v_{12} \\ W_{R} \end{pmatrix}}_{A^{2} = \pi r_{D}^{2}} \underbrace{ \begin{pmatrix} \vdots \\ W_{R} \end{pmatrix}}_{W_{R}} \underbrace{ \begin{pmatrix} \vdots \\ W_{R} \end{pmatrix}}_{W$	yr.			

2000

Ha

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	
First stage:	Traffic scenario determination			
Ve	ehicular density			
lt	is estimated using inforr	mation from V2V cor	nmunication [3]:	
		$\delta = \frac{n_r + 1}{A}$		
n _r	n_r is the number of vehicles inside a radious r_D , A is the "polling"			
ar	area.			
[3] Veh	[3] L. Garelli etal. Mobsampling: V2V communications for traffic density estimation. In 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, May 15-18 2011.			
Po	olling area			
	If $2r_D > W_R$			

 $A = 2r_D W_R$

0000	00		000	0000	Summa
First s	stage: Tra	ffic scenario determination			
	Final	lly			
	Traff	ic scenario is determine	ed with a rule-based	l inference engine	:
	•	Inputs: density $(\bar{\delta}_H, \bar{\delta}_N)$) and speed (\bar{V}_H, \bar{V}_I)	$_{\rm V},\Delta \bar{V}_{\rm H})$ information	on.
	۰	Outputs: Free Traffic (Congested Traffic (CT Congestion (LC).	FT), Approaching), Passing Bottlened	Congestion (AC), ck (PB) and Leav	ing
	۲	28 IF-THEN rules:			
		<u>R_9</u> : IF \bar{V}_H , \bar{V}_N , $\bar{\delta}_N$ ar	e LOW and $\bar{\delta}_H$ is HI	GH and $\Delta \overline{V}_H$ is NE	G
		THEN (CT is YES	and FT, AC, PB,	LC <i>are</i> NOT) (1.0	
	The	the scenario is given	by:		_

 $f = \operatorname{argmax}(FC, AC, CT, PB, LC)$

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
First stage:	Traffic scenario determination			
Fir	ally			
Tra	affic scenario is determin	ed with a rule-based	l inference engine	::
	• Inputs: density $(\bar{\delta}_H, \bar{\delta}_N)$) and speed (\bar{V}_H, \bar{V}_I)	$_{\rm V},\Deltaar{V}_{H})$ informati	on.
	 Outputs: Free Traffic Congested Traffic (CT Congestion (LC). 	(FT), Approaching), Passing Bottlened	Congestion (AC), ck (PB) and Leav	ring
	• 28 IF-THEN rules:			
	<u>R_9</u> : IF \bar{V}_H , \bar{V}_N , $\bar{\delta}_N$ and	re LOW and $\bar{\delta}_H$ is HI	GH and $\Delta \bar{V}_H$ is NE	EG

THEN (CT is YES and FT, AC, PB, LC are NOT) (1.0)

Then, the scenario is given by:

Motivat 00000	ion The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
First st	ge: Traffic scenario determination			
	Finally			
	Traffic scenario is determin	ned with a rule-based	l inference engine	:
	• Inputs: density $(\bar{\delta}_H, \bar{\delta}_I)$	V) and speed $(ar{V}_H,ar{V}_H)$	$_{W},\Deltaar{V}_{H})$ informati	on.
	 Outputs: Free Traffic Congested Traffic (CT Congestion (LC). 	(FT), Approaching Γ), Passing Bottlene	Congestion (AC), ck (PB) and Leav	ing
	• 28 IF-THEN rules:			

 R_9 : **IF** \bar{V}_H , \bar{V}_N , $\bar{\delta}_N$ are LOW and $\bar{\delta}_H$ is HIGH and $\Delta \bar{V}_H$ is NEG

THEN (CT is YES and FT, AC, PB, LC are NOT) (1.0)

Then, the scenario is given by:

Motiva 00000	tion The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary
First st	age: Traffic scenario determination			
1	Finally			
	Traffic scenario is determin	ned with a rule-based	l inference engine	::
	• Inputs: density $(\bar{\delta}_H, \bar{\delta}_H)$	V) and speed $(ar{V}_H,ar{V}_H)$	$_{N},\Deltaar{V}_{H})$ informati	on.
	 Outputs: Free Traffic Congested Traffic (CT Congestion (LC). 	(FT), Approaching Γ), Passing Bottlenee	Congestion (AC), ck (PB) and Leav	'ing

• 28 IF-THEN rules:

<u> R_9 </u>: **IF** \bar{V}_H , \bar{V}_N , $\bar{\delta}_N$ are LOW and $\bar{\delta}_H$ is HIGH and $\Delta \bar{V}_H$ is NEG

THEN (CT is YES and FT, AC, PB, LC are NOT) (1.0)

Then, the scenario is given by

H

Motiv 0000	Ition The Proposed Advisory System 00 000000	SUMO-phone Integration	Experimental Results 0000	Summary
First s	tage: Traffic scenario determination			
	Finally			
	Traffic scenario is determin	ed with a rule-based	l inference engine	:
	• Inputs: density $(\bar{\delta}_H, \bar{\delta}_N)$) and speed (\bar{V}_H, \bar{V}_I)	$_{\rm W},\Deltaar{V}_{H})$ informati	on.
	 Outputs: Free Traffic Congested Traffic (CT 	(FT), Approaching), Passing Bottlened	Congestion (AC), ck (PB) and Leav	ing
	Congestion (LC)			

• 28 IF-THEN rules:

 R_9 : **IF** \bar{V}_H , \bar{V}_N , $\bar{\delta}_N$ are LOW and $\bar{\delta}_H$ is HIGH and $\Delta \bar{V}_H$ is NEG

THEN (CT is YES and FT, AC, PB, LC are NOT) (1.0)

Then, the scenario is given by:

 $T = \operatorname{argmax}(FC, AC, CT, PB, LC)$

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summa
Second stage	e: Speed and distance recommendations			
Vir	tual vehicle dynamic			
Po: its	sition of the Virtual NV speed?	is given by the NPI	, but what abou	Jt
	e speed model			

A simple model is used:

$$V(t) = \alpha V(t-1)$$

In our case we have:

 $V_{N}\left(t
ight)=\min\left(lpha_{NV}\left(t
ight)V_{N}\left(t-1
ight)$, Speed limit)

00000		000	0000	
Second	stage: Speed and distance recommendations			
	Virtual vehicle dynamic Position of the Virtual NV i	s given by the NPI	, but what abo	ut
	its speed?			

The speed model

A simple model is used:

$$V(t) = \alpha V(t-1)$$

In our case we have:

 $V_{N}\left(t
ight)=\min\left(lpha_{NV}\left(t
ight)V_{N}\left(t-1
ight)$, Speed limit)

Traffic scenario	FT	AC	СТ	PB	LC
α _{NV}	1.4	0.7	0.9	0.9	1.4

Hr.

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
	0000000			
Second stage: Sp	peed and distance recommendations			

Recommended speed

Our speed recommendation is a time-variant weighted sum of V_H and V_N :

$$V_{R}(t) = \alpha_{R}(t) V_{N} + (1 - \alpha_{R}(t)) V_{H}$$

Traffic scenario	FT	AC	СТ	PB	LC
α _R	0.7	0.7	0.7	0.45	0.7

Motivation	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Summary
	0000000			
Second stage: Sp	eed and distance recommendations			

Recommended speed

Our speed recommendation is a time-variant weighted sum of V_H and V_N :

$$V_{R}(t) = \alpha_{R}(t) V_{N} + (1 - \alpha_{R}(t)) V_{H}$$

Traffic scenario	FT	AC	СТ	PB	LC
α _R	0.7	0.7	0.7	0.45	0.7

Motivation 000000	The Proposed Advisory System ○○○○○○●	SUMO-phone Integration	Experimental Results 0000	Summar
Second stage:	Speed and distance recommendations			
Safe	e distance			
Dist	ance recommendation is	s based on a policy	for safe distance:	
	$D_{R}\left(t\right)=h_{0}+h_{1}$	$V_H(t) + h_2\left(V_H^2(t)\right)$	$-V_{N}^{2}\left(t ight)$	
•	h_0 is the minimum safe	e distance,		
۹	h_1 is the reaction drive	er time,		
٥	h_2 is a design parameter	er.		
Dist	ance recommendation			

Finally, we use $e = D_{H-V} - D_R$ and the following convention for the distance recommendation:

• If e > 0, then distance is OK.

• If $-1m < e \le 0$, then distance is "Close".

• If $-2m < e \leq -1m$, then distance is "Very close".

Motivation 000000	The Proposed Advisory System ○○○○○○●	SUMO-phone Integration	Experimental Results 0000	Summary
Second stage:	Speed and distance recommendations			
Safe	distance			
Dist	ance recommendation i	is based on a policy	for safe distance:	
	$D_{R}(t) = h_{0} + h_{1}$	$V_{H}(t) + h_{2}\left(V_{H}^{2}(t)\right)$	$-V_{N}^{2}(t))$	

- *h*⁰ is the minimum safe distance,
- *h*₁ is the reaction driver time,
- h₂ is a design parameter.

Finally, we use $e = D_{H-V} - D_R$ and the following convention for the distance recommendation:

- If e > 0, then distance is OK.
- If $-1m < e \leq 0$, then distance is "Close".
- If $-2m < e \leq -1m$, then distance is "Very close".

Motivation 000000	The Proposed Advisory System ○○○○○○●	SUMO-phone Integration	Experimental Results 0000	Summary
Second stage:	Speed and distance recommendations			
Safe	distance			
Dist	ance recommendation i	s based on a policy	for safe distance:	
	$D_{R}(t) = h_{0} + h_{1}$	$V_H(t) + h_2 \left(V_H^2(t) \right)$	$-V_{N}^{2}(t)$	

- *h*⁰ is the minimum safe distance,
- *h*₁ is the reaction driver time,
- *h*₂ is a design parameter.

Finally, we use $e = D_{H-V} - D_R$ and the following convention for the distance recommendation:

- If e > 0, then distance is OK.
- If $-1m < e \le 0$, then distance is "Close".
- • If $-2m < e \leq -1m$, then distance is "Very close".

Motivation 000000	The Proposed Advisory System ○○○○○○●	SUMO-phone Integration	Experimental Results 0000	Summary
Second stage:	Speed and distance recommendations			
Safe	distance			
Dist	ance recommendation i	s based on a policy	for safe distance:	
	$D_R(t) = h_0 + h_1$	$V_H(t) + h_2 \left(V_H^2(t) \right)$	$-V_{N}^{2}(t)$	

- *h*⁰ is the minimum safe distance,
- *h*₁ is the reaction driver time,
- *h*₂ is a design parameter.

Finally, we use $e = D_{H-V} - D_R$ and the following convention for the distance recommendation:

• If e > 0, then distance is OK.

• If $-1m < e \le 0$, then distance is "Close".

• • If $-2m < e \leq -1m$, then distance is "Very close".

Motivation 000000	The Proposed Advisory System ○○○○○○●	SUMO-phone Integration	Experimental Results 0000	Summary
Second stage:	Speed and distance recommendations			
Safe	distance			
Dist	ance recommendation i	is based on a policy	for safe distance:	
	$D_{R}(t) = h_0 + h_1$	$V_{H}(t) + h_{2}(V_{H}^{2}(t))$	$-V_{N}^{2}(t))$	

- *h*⁰ is the minimum safe distance,
- *h*₁ is the reaction driver time,
- *h*₂ is a design parameter.

Finally, we use $e = D_{H-V} - D_R$ and the following convention for the distance recommendation:

- If e > 0, then distance is OK.
- If $-1m < e \le 0$, then distance is "Close".

• • If $-2m < e \leq -1m$, then distance is "Very close".

۱r.

Motivation 000000	The Proposed Advisory System ○○○○○○●	SUMO-phone Integration	Experimental Results 0000	Summary
Second stage:	Speed and distance recommendations			
Safe	distance			
Dist	ance recommendation i	s based on a policy	for safe distance:	
	$D_R(t) = h_0 + h_1$	$V_H(t) + h_2 \left(V_H^2(t) \right)$	$-V_{N}^{2}(t)$	

- *h*⁰ is the minimum safe distance,
- *h*₁ is the reaction driver time,
- *h*₂ is a design parameter.

Finally, we use $e = D_{H-V} - D_R$ and the following convention for the distance recommendation:

- If e > 0, then distance is OK.
- If $-1m < e \le 0$, then distance is "Close".
- If $-2m < e \leq -1m$, then distance is "Very close".

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ●○○	Experimental Results 0000	Summary
The simulation p	latform			

• A HIL simulation to evaluate the performance of the proposed advisory system.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ●○○	Experimental Results 0000	Summary
The simulation p	latform			

• A HIL simulation to evaluate the performance of the proposed advisory system.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ●○○	Experimental Results 0000	Summary
The simulation p	latform			

• A HIL simulation to evaluate the performance of the proposed advisory system.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ●○○	Experimental Results 0000	Summary
The simulation p	latform			

• A HIL simulation to evaluate the performance of the proposed advisory system.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ●○○	Experimental Results 0000	Summary
The simulation p	latform			

• A HIL simulation to evaluate the performance of the proposed advisory system.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ●○○	Experimental Results 0000	Summary
The simulation pl	atform			

• A HIL simulation to evaluate the performance of the proposed advisory system.

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ○●○	Experimental Results 0000	Summary
HIL capabilities				

Interconnection of components

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ○●○	Experimental Results 0000	Summary
HIL capabilities				

Interconnection of components

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ○●○	Experimental Results 0000	Summary
HIL capabilities				

Interconnection of components

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ○●○	Experimental Results 0000	Summary
HIL capabilities				

Interconnection of components

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration ○●○	Experimental Results 0000	Summary
HIL capabilities				

Interconnection of components

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	
Simulation Setup				

SUMO

<u>The road:</u> A street circuit around the North Campus, National University of Ireland -Maynooth.

Parameters.

- Simulated vehicles: 23.
- Attributes of vehicles:

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	
Simulation Setup				

SUMO

<u>The road:</u> A street circuit around the North Campus, National University of Ireland -Maynooth.

Parameters

- Simulated vehicles: 23.
- Attributes of vehicles:

Туре	А	В	C	D
Accel	2.15	5.5	4.54	50
Decel	1.22	5.0	4.51	30
Length	1.75	6.1	4.45	40
Max.S.	2.45	6.1	4.48	50

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0●00	
Simulation Setup				

Smartphone

The phone:

SU

Hamilton Institute

- Samsung Galaxy S III mini (GT-I8190N),
- Android Jeally Bean (V 4.1.2), Torque Pro.

The updating rate: 1 second.

STI

Host Vehicle

<u>The real vehicle:</u> 2008 Toyota Prius 1.5 5DR Hybrid Synergy Drive.

The OBD2 adaptor: Kiwi Bluetooth (PLX devices).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□► ◇◇◇

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results ○●○○	
Simulation Setup				

Smartphone

The phone:

Hamilton Institute

- Samsung Galaxy S III mini (GT-18190N),
- Android Jeally Bean (V 4.1.2), Torque Pro.

The updating rate: 1 second.

Host Vehicle

The real vehicle: 2008 Toyota Prius 1.5 5DR Hybrid Synergy Drive.

The OBD2 adaptor: Kiwi Bluetooth (PLX devices).

▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results ○○●○	Summary
Tests				

Motivation 200000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results	Sun
raphical result	IS			
Follo	wing/ignoring the reco	ommendations		
youd read		PT scenario AP scenario Cf scenario Pf scenario Distance recommended Distance recommendation		0#-
0	6 105 110 120	105 140 150	Mp 1/0	9

Hamilton Institute

Motivation 000000	The Proposed Advisory System	SUMO-phone Integration	Experimental Results 0000	Summary

Summary

- HIL simulation let us evaluate non-obvious issues:
 - frequency/format of recommendations,
 - technical problems (e.g. synchronisation),
 - evaluation in risk conditions using a scenario under control.

- Future work
 - general paper: detailed setup, more illustrative examples.

R.H. Ordonez-Hurtado etal.

Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination.

Lecture Notes in Control and Information Sciences, Springer, accepted.

- W.M. Griggs and R.N. Shorten. Embedding Real Vehicles in SUMO for Large-Scale ITS Scenario Emulation. Accepted in ICCVE 2013.

tamilton Institu

L. Garelli, C. Casetti, C. Chiasserini, and M. Fiore. Mobsampling: V2V communications for traffic density estimation.

In 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, May 15-18 2011.

シャクト 正正 スポット キョッ スラ