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Introduction | why automatic driving style 
recognition?
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o In-vehicle semi-automatic functions: 
- “Seamless” workload monitoring 
- Control algorithms for path determination  

become more user-aware
- ADAS acceptability will increase
- Coaching: feedback to the driver

while driving

o Infrastructure: 
- Safety assessment of road infrastructure
- Promote eco-safe driving through profile 

sharing  collaborative driving



Problem formulation
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o Assumptions of labelled maneuvers: Supervised setting (classes are 

known)

o Assumption of no labels available: Unsupervised setting (classes have 

to be discovered)

Offline 
learning

Online 
classification

i ε [0, T >> 1k]

j ε [0, N <10]



Related work | Observables
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Feature Sensor needed

Distance travelled (m) CAN (odometer)

Longitudinal velocity (m/sec)
Lateral velocity (m/sec)
Angular velocity around vertical axis (yawrate)

CAN + inertial navigation unit: gps
receiver and gyroscope

Longitudinal acceleration (m/sec2)
Lateral acceleration(m/sec2)

Accelerometer or Velocity filtering

Brake position CAN

Steering wheel angle
Steering wheel velocity

CAN

Heading: distance and angle from the vehicle in 
front 

Radar

lateral displacement in the lane Lane recognition camera

Geo-data: weather info, avg speed, number of 
lanes, traffic info, road rype, time of the day

Local dynamic map cloud component 
(Wifi connection)



Related work | Classes of driving style
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Classes …based on Driving patterns Data

{aggressive, non-aggresive} Speeding, failure to stop, lane violations 

{Flow conformist, extremist, tailgater, 
planner, ultraconservative}

Speed, heading profile 

{aggressive, non-aggressive in roundabouts}
{emission hotspots in roundabouts}

Mean circulating speed, acceleration maxima 
profile

Sim
(4 users)

{driver A, driver B} Brake, acceleration, turn event 

{Emergency braking
Obstacle avoidance
Hill-starting
Braking in a turn}

Short term steering maneuvers
Short term braking/accelaration events


(10 subjects)

{steer, ease up on the accelerator, brake}
On 9 intersection classes 

Past velocity, acceleration 

{economical, normal, sporting} Gasoline consumption rate from speed, 
acceleration and heading degree

Sim

{economical, normal, sporting} Electric energy consumption based on SoC,
weather info, avg speed, traffic info, road 
rype, time of the day

-



Related work | Methods

o Classification methods

o Regression methods
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double layer HMM
sticky HDP-HMM

Context is
modelled as

hidden layers in 
HMM network

Context is either
inserted if
known or
ignored



Related work | Time series data representation 

o Discretization to create a vocabulary of time strings : 

• Discretize into time strings (SAX symbolic repr.)
• Map each new data sequence to  a SAX vocabulary
• Select a suitable simillarity metric for SAX histogram repr.

o BOP Representation: Histogram of membership to clusters

• Visual analog 
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1NN 4NN2NN3NN

BOP produces 
very good 

results even 
without 

knowing the
ordering of the 

patterns.



Case Study: Driver profile enabler in TEAM

o Encouraging collaborative behaviour of travellers and drivers. 
o Making infrastructures adapt pro-actively and in real-time based on user 

needs. 
o Combining automotive communication systems with cloud technologies. 
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Case Study: Functional architecture (1/3)

o Online driving style classification for collaborative driving
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Driving style Classifier

Driving data history

(vehicle dynamic data) Segments (summary 
data)

Meta-data (used 
for efficient 

indexing)

alg: learning 
(SVM)

(context dynamic data)

(input to Community      gaming application )



Case Study: Functional architecture (2/3)
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o Dynamic data feed

GeoTrip
DB

Personal trip geo-referenced 
data: e.g.
o ego-vehicle location in 

the map
o avg speed in the road 

segment being traversed.
DrivProfile
DB

Personal driving indicators’ 
aggregated data:, e.g:
o lane violations per km,
o overspeeding per km.(vehicle 

dynamic 
data)

(context 
dynamic 

data)

CAN o Long/lat velocity
o Acceleration
o Brake activity
o Gear selection

ADAS OBU o ACC heading distance

ADAS 
cloud

o Lane violations counted by 
LR camera per km



Case Study: Functional architecture (3/3)

o Users: Encouraging collaborative behaviour of travellers and drivers. 
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(input to Community gaming application )

Driving style Classifier

Driving data history

Segments (summary 
data)

Meta-data (used 
for efficient 

indexing)

alg: learning 
(SVM)

Headway 
profile

o fluid-friendly
o fluid-neutral
o not fluid-friendly

Eco-safe
profile

o eco
o normal driving
o aggressive driving

Long/Lat
acceleration 
profile

o ?

Headway profile o ?

Stopping
profile

o ?



Future work

o Logging sessions for TEAM use cases (difficult use cases are included: 
intersections, highway lane exits/mergings)

o Define levels of maneuvering activity to be recognized. 
oClustering of vehicle time series data to discover subsets of different 

profiles.

o Apply feature space quantization in order to use histogram-based low-
dimensional representation and compare it against row data 
representation using SVM
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Conclusions

o Automatic driving pattern recognition can make modern ITS systems more 
efficient 

o Advances in time series data mining and classification make this possible
o REGRESSION can be used to explore the importance of different signal activity in a 

specific problem ()
o CLASSIFICATION can be used to recognize higher level events from low-level 

observations
o Dimensionality reduction techniques like bag of features seem appropriate for  

time series data and deserve further investigation

Key message:  Personalization and context adaptivity can be 
learned
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Find out more in                                                          website:

http://www.collaborative-team.eu/

This project is co-funded by 
the European Commission 

DG CONNECT in FP7
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