Driving Style Recognition for Co-operative Driving: A survey

Anastasia Bolovinou, ISENSE group, ICCS

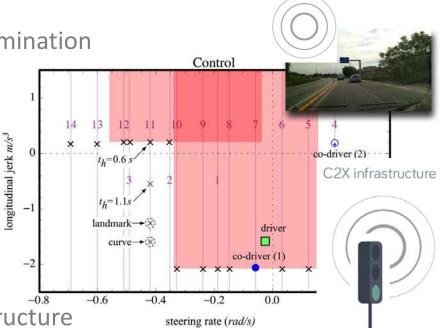
* joint work with A. Amditis (ICCS), F.Belloti (UoG) and M.Tarkiainen (VTT) during TEAM IP

Outline

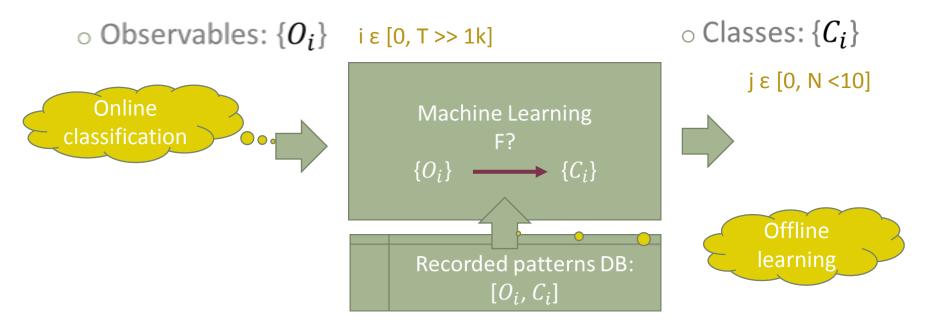
- o Intro: why automatic driving style recognition?
- Problem formulation: from raw vehicle data to maneuver recognition
- Related work overview:
 - $\circ\,$ Sorted by observables
 - Sorted by recognized classes of driving style
 - o Methods

o Reduced time series data representation: a promising research direction

- o TEAM application: A case study
- o Future work
- o Conclusions


Introduction | why automatic driving style recognition?

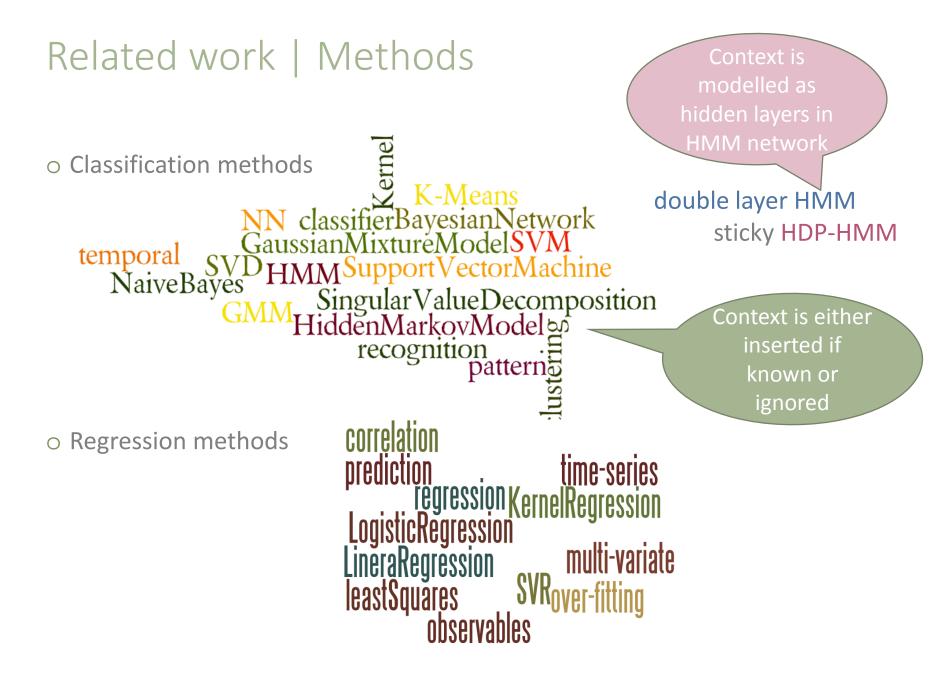
o In-vehicle semi-automatic functions:


- "Seamless" workload monitoring
- Control algorithms for path determination
 become more user-aware
- ADAS acceptability will increase
- **Coaching**: feedback to the driver while driving

- Safety assessment of road infrastructure
- Promote eco-safe driving through profile sharing → collaborative driving

Problem formulation

Assumptions of labelled maneuvers: Supervised setting (classes are known)


 Assumption of no labels available: Unsupervised setting (classes have to be discovered)

Related work | Observables

Feature	Sensor needed
Distance travelled (m)	CAN (odometer)
Longitudinal velocity (m/sec) Lateral velocity (m/sec) Angular velocity around vertical axis (yawrate)	CAN + inertial navigation unit: gps receiver and gyroscope
Longitudinal acceleration (m/sec2) Lateral acceleration(m/sec2)	Accelerometer or Velocity filtering
Brake position	CAN
Steering wheel angle Steering wheel velocity	CAN
Heading: distance and angle from the vehicle in front	Radar
lateral displacement in the lane	Lane recognition camera
Geo-data: weather info, avg speed, number of lanes, traffic info, road rype, time of the day	Local dynamic map cloud component (Wifi connection)

Related work | Classes of driving style

Classes	based on Driving patterns	Data
{aggressive, non-aggresive}	Speeding, failure to stop, lane violations	\checkmark
{Flow conformist, extremist, tailgater, planner, ultraconservative}	Speed, heading profile	\checkmark
{aggressive, non-aggressive in roundabouts} {emission hotspots in roundabouts}	Mean circulating speed, acceleration maxima profile	Sim (4 users)
{driver A, driver B}	Brake, acceleration, turn event	✓
{Emergency braking Obstacle avoidance Hill-starting Braking in a turn}	Short term steering maneuvers Short term braking/accelaration events	✓ (10 subjects)
{steer, ease up on the accelerator, brake} On 9 intersection classes	Past velocity, acceleration	\checkmark
{economical, normal, sporting}	Gasoline consumption rate from speed, acceleration and heading degree	Sim
{economical, normal, sporting}	Electric energy consumption based on SoC, weather info, avg speed, traffic info, road rype, time of the day	-

Related work | Time series data representation

BOP produces

very good

results even

without

knowing the

ordering of the

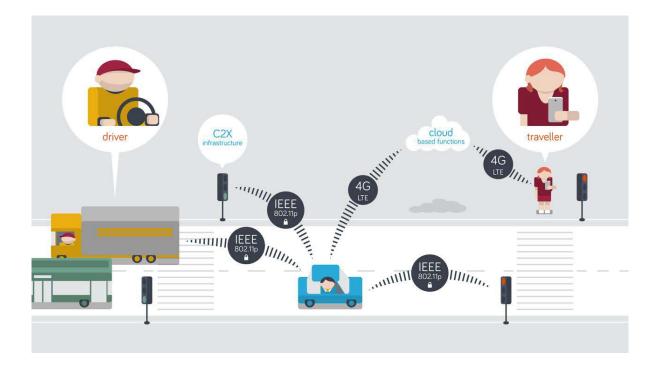
patterns.

4NN

1NN

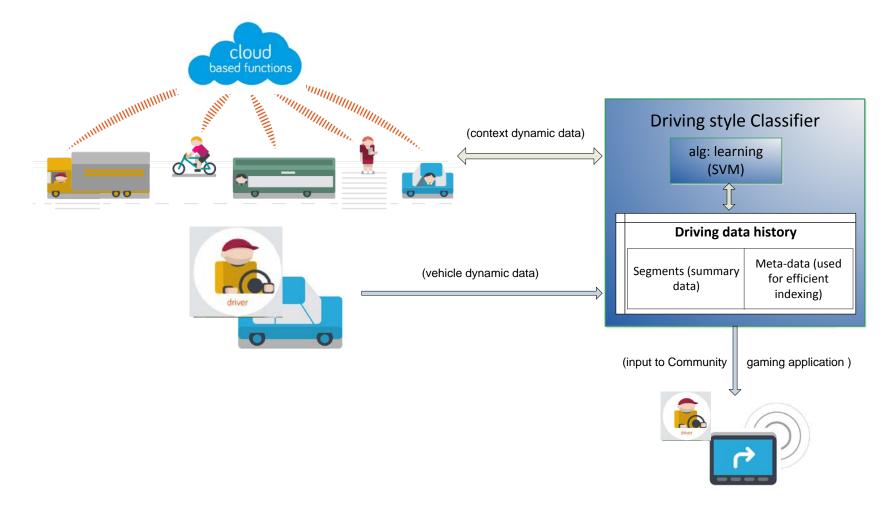
3NN 2NN

o Discretization to create a vocabulary of time strings :

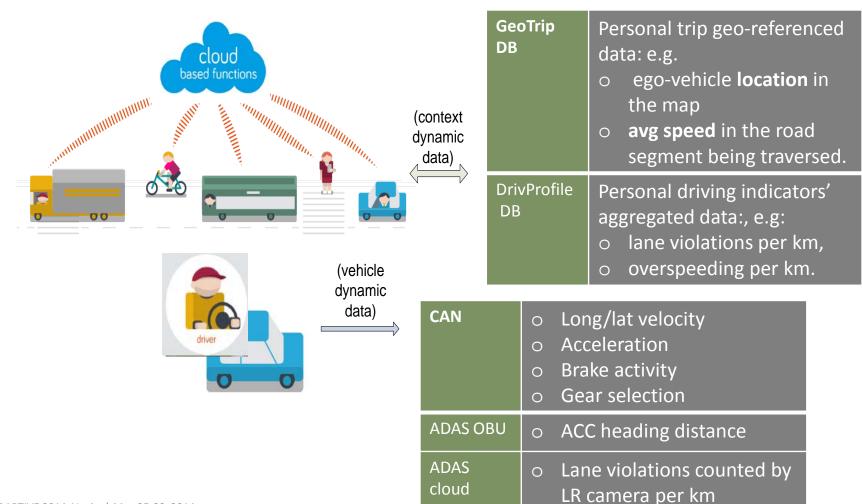

- Discretize into time strings (SAX symbolic repr.)
- Map each new data sequence to a SAX vocabulary
- Select a suitable simillarity metric for SAX histogram repr.

o BOP Representation: Histogram of membership to cluster

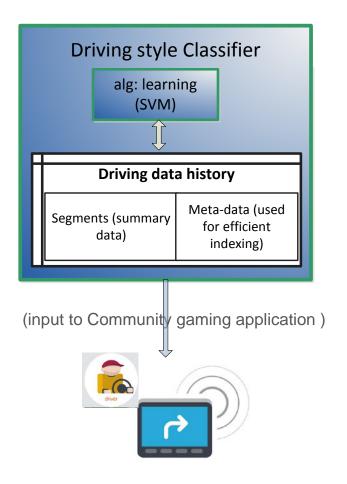
• Visual analog


Case Study: Driver profile enabler in TEAM

- Encouraging collaborative behaviour of travellers and drivers.
- Making infrastructures adapt pro-actively and in real-time based on user needs.
- Combining automotive communication systems with cloud technologies.


Case Study: Functional architecture (1/3)

• Online driving style classification for collaborative driving


Case Study: Functional architecture (2/3)

o Dynamic data feed

Case Study: Functional architecture (3/3)

• Users: Encouraging collaborative behaviour of travellers and drivers.

Long/Lat acceleration profile	o ?	
Headway pro	file o ?	
Stopping profile	o ?	
Headway profile	 fluid-friendly fluid-neutral not fluid-friendly 	
Eco-safe profile	 eco normal driving aggressive driving 	

Future work

 Logging sessions for TEAM use cases (difficult use cases are included: intersections, highway lane exits/mergings)

• Define levels of maneuvering activity to be recognized.

 Clustering of vehicle time series data to discover subsets of different profiles.

 Apply feature space quantization in order to use histogram-based lowdimensional representation and compare it against row data representation using SVM

Conclusions

- Automatic driving pattern recognition can make modern ITS systems more efficient
- Advances in time series data mining and classification make this possible
 - REGRESSION can be used to explore the importance of different signal activity in a specific problem ()
 - CLASSIFICATION can be used to recognize higher level events from low-level observations
 - Dimensionality reduction techniques like bag of features seem appropriate for time series data and deserve further investigation

Key message: Personalization and context adaptivity can be learned

Find out more in

website:

http://www.collaborative-team.eu/

This project is co-funded by the European Commission DG CONNECT in FP7

Selected references

- D. Zhang, Q. Xiao, J,Wang and K. Li, "Driver curve speed model and its application to ACC," International Journal of Automotive Technology, 2013, vol. 14, no. 2, pp. 241–247.
- o A. Amditis, P. Lytrivis, I. Karaseitanidis, M. Prandtstädter, and I. Radusch, "Tomorrow's Transport Infrastructure: from Static to Elastic Mobility," Proc. of the 20th ITS World Congress 2013, Tokyo, 14-18 October 2013.
- o Mudgal, S. Hallmark, A. Carriquiry, and K. Gkritza, "Driving behavior at a roundabout: A hierarchical Bayesian regression analysis," Transportation Research Part D: Transport and Environment, vol. 26, January 2014
- o M. V. Ly, S. Martin, and M. M. Trivedi, "Driver Classification and Driving Style Recognition using Inertial Sensors," IEEE IV2013
- o L. He, C. Zong, and C. Wang, "Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model," Journal of Zhejiang University Science C, Issue 13, 2013
- o R. Wang and S.M. Lukic, "Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles," IEEE Vehicle Power and Propulsion Conference (VPPC), 6-9 Sept. 2011
- o J. Lin and Y. Li, Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation.

Thank you!

Anastasia Bolovinou Research engineer

Follow our work: abolov@iccs.gr http://i-sense.iccs.ntua.gr/

