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What is „map matching“?

 Wikipedia(1):
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“Map matching is a technique in GIS that 
associates a sorted list of user or vehicle 
positions to the road network on a digital 
map. 

The main purposes are to track vehicles, 
analyze traffic flow and finding the start 
point of the driving directions.”

(1) https://en.wikipedia.org/wiki/Map_matching



Why can map matching be difficult?

 Noisy measurements, a dense road network and sparse sampling in time 
make this task difficult

 Simple „point-to-curve“ matching quickly becomes insufficient
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State-of-the-art solutions

 use information from all trajectory points and choose the most likely path
through the road network given the available position estimates

 e.g. Hidden Markov Model map matching [Newson and Krumm, 2009](2)
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(2) Paul Newson and John Krumm. Hidden markov map matching through noise and sparseness. In Proceedings of the 17th ACM 
SIGSPATIAL International Conference on advances in Geographic Information Systems, pages 336–343, 2009.
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hidden states R = (R1, …, Rn)  roads in the network

observable variable Z = (Z1, …, Zn)  position measurements (e.g. GPS)
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zero-mean Gaussian positioning error
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transition probability: exponential function of the difference between 
the route length and the great circle distance between zt and zt+1:
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Pr(Zi=z1 | Ri = r1)
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joint distribution of position measurements Z and roads in the network R:

 maximize using Viterbi algorithm!
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Pr(Ri=r4 | Ri-1=r1)
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joint distribution of position measurements Z and roads in the network R:

 maximize using Viterbi algorithm!

The transition probability calculation requires a shortest path 
routing between each pair of candidate roads, which is a 
computationally expensive operation! 

 performance bottleneck!



Improving run-time

 Previous approaches: 

 parallelize the computation of measurement and transition probabilities using 
multi-threading [Song et al., 2012](3)

 determine paths from a candidate road to all of its successors with a single 
execution of Dijkstra’s algorithm to reduce the number of required shortest-
path routings from nm to n [Wei et al., 2012](4)

 Our approach:

 reduce number of shortest-path routings by replacing Viterbi algorithm with 
bidirectional Dijkstra algorithm

 complementary to previous approaches!
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(3) R.Song, W. Lu, W.Sun. Quick Map Matching Using Multi-Core CPUs. ACM SIGSPATIAL GIS, 2012

(4) Hong Wei, Yin Wang, George Foreman Fast viterbi mapmatching with tunable weight functions ACM SIGSPATIAL GIS, 2012



Replacing Viterbi algorithm

 Viterbi

 standardard algorithm to compute most likely sequence of states R given
observations Z

 requires a full matrix of transition probabilities!  expensive!

 bidirectional Dijkstra‘s algorithm

 well-known algorithm for minimum cost (e.g. shortest-path) routing

 evaluates the costs of a node and its outgoing edges only when it arrives at this 
node during search!

 in most cases only a fraction of all nodes needs to be visited before the minimum 
cost path is found [Nicholson, 1966](5)
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(5) T.A.J. Nicholson Finding the shortest route between two points in a network The Computer Journal, Vol. 9, Nr. 3,S. 275-280, 1966.
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Experimental results

 Saved routings:
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Conclusion and Outlook

 transforming the maximum likelihood problem into a 
minimum cost path problem and replacing Viterbi
algorithm with bidirectional Dijkstra‘s algorithm
significantly reduces the number of computationally
expensive shortest-path routings!

 savings increase when the mapmatching algorithm has to
account for greater uncertainty / noise
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 this approach can be combined with previous approaches in the literature (multi-
threading and optimized shortest-path routing) to further improve performance

 search algorithms other than bidirectional Dijkstra‘s algorithm – e.g. A*-search
– have potential for further improvements.

 required: heuristic for estimating cost from currently visited node to target node
(e.g. based on great circle distance?)
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