Towards Social Serious Gaming in the IoT

Concept and prototype development

BY

GAUTAM R.DANGE

FRANCESCO BELLOTI

MARCO SAMARITANI

PRATHEEP K.PARANTHAMAN

RICCARDO BERTA

ALESSANDRO DE GLORIA

Introduction

- Internet of the Things
 - Distributed sensing, computation and actuation
- Cyberphysical system
 - Digitalization of real-world physical processes
- Cloud computing and Service Oriented Architecture
- Any kind of application domains
- Grand challenge on analytics
 - Descriptive analytics
 - Diagnostic analytics
 - Predictive analytics
 - Prescriptive analytics

IOT Application System Design Process

- Requirement analysis and elicitation from user and market
 - Digitalization of system and processes
 - Huge availability of process data
 - Exploitation for:
 - Instruction and training
 - Performance assessment
 - Coaching
- System architecture
- Implementation
- (User testing)

IoT Social Gaming Platform concept

Application in the Automotive Domain

Social Gaming Services (I)

VC Bank

- Token economy mgmt
- User profiling
- App balancing
- Bonuses/maluses
- Happy hours/areas

User perf metri cs App Logic Serv Lev Sel

Virtual Coins

Real world rewards

- Bus tickets
- Parking slots
- Reserved area access

Social gaming services (II)

Competition service

- Self and social comparisons
- Periodic (time and space-based) competitions
- Several different apps can be aggregated in competitions
- Game features (Charts, comparison and ranking, badges)
- Feeds to the VC server

Implemented System Architecture

Algorithms used for evaluation

Kohonen Neural

networks

K-Nearest

Neighbors

- Unsupervised learning
- Classification of signal patterns into clusters
- Event-based penalizing criterion
- Batch processing (2-5 minutes)

- Supervised learning (training set)
- Sample by sample classification
- Combination of signals
- K=1
- Suited for immediate feedback and coaching

 Comparison with ideal linear functions (single signals by now)

- Sample by sample evaluation
- Suited for immediate feedback and coaching
- Dynamic sliding Window Recognition of significant windows of signal values

Linear Distance

- Detection of events
- Suited for event-based feedback and coaching

Early algorithm tuning tests

- Vehicular signals gathered by CRF vehicles in Trento
 - Three 20-minute drives
 - Different drivers on the same road

App name	Evaluation algo	Signals evaluated	Signal weights
Green drive 1	Linear distance	Acceleration, RPM, fuel consumption	Equally weighted linear combination
Green drive 2	Kohonen Neural Networks	Acceleration, brake	Equally weighted linear combination
Green drive 3	K-Nearest Neighbors	Speed and brake	-
Green drive 4	Dynamic Sliding Window	Speed	-
Fluid traffic	Linear distance	Speed	-

Drive evaluation (avg values of the algorithms, different inputs)

Kohonen Neural Networks

K-Nearest Neighbors

Linear Distance

Dynamic Sliding Window

Preliminary analysis

- The Kohonen Neural Networks tends to penalize minor harsh, suited for personal training (self comparison and improvements)
- K-NN has nominal penalizing criterion in which certain patterns are provided as a sample set to the system and specific harsh patterns are picked up and penalized.
- The Linear distance and sliding windows tend to be subject to noise
 - Need for hysteresis/low pass filetring
- Sliding windows allows detecting events, thus warning the driver at the end of the event
- Importance of processing different signals and target different events and goals

Conclusion and ongoing work

- Driver assessment
- Preliminary analysis presented
- Comparison between algorithms with same inputs
- Noise robustness
- More test drives are needed
 - Different vehicles
- Semantic analysis for driver coaching

- System implementation (Serious Game for Mobility and Transportation)
- UI on vehicle and smartphone
- Social networking
- Integration of different apps
 - Parking
 - Collaborative Adaptive Cruise Control
 - Collaboratve Navigation
 - Collaborative Driving and Manouvering
 - Public Transport Optimization
- Flexible social gaming platform
 - Service Oriented Architecture
 - Different application domains

Thank you for listening

QUESTIONS?